Joint Morphogenesis in Brachial Plexus Birth Palsy:
A Proposed Computational Model

Rehab Researchers 2015 Summer Series

Carolyn Stolfi
6/26/15
• A model serves as a way to generate a **predicted outcome**.
• **Real-world model:** Stryker Hip Navigation Software
• **Desired outcome:** Acetabular ream depth for **optimal** hip cup placement

Stryker 2009 Lit. # 9100-001-279
• BPBP can severely limit a child’s quality of life during development and into adult years
• Altered muscle forces → changes in bone growth
• Example: Scapular winging

Terzis et al. 2014
Upper extremity overview

http://droualb.faculty.mjc.edu
Current computational modeling techniques (Taylor et al. 2007)

1) **Hypothesis:**
Bone growth in the humerus responds to functional adaptation.

2) **Model:**
Musculoskeletal model + finite element model

3) **Predicted Outcome:**
Changes in bone mass density

1) Functionally relevant parameters, data collection technique

2) Loads, boundary conditions, geometry, material properties

3) Iteratively evaluate model and refine as needed
Additional perspective of joint morphogenesis (Giorgi et al. 2014)

<table>
<thead>
<tr>
<th>Biological contribution of growth (e.g. bone remodeling process)</th>
<th>Biological + mechanical contribution of growth (internally and externally applied loads)</th>
</tr>
</thead>
</table>

- Adaptive growth based on orthonormal thermal capabilities (isotropic)
Proposed approach and discussion questions

- **Clinical challenge addressed:** Target critical factors that negatively affect bone development.
- **Hypothesis:** Localized changes in bone development of the glenohumeral joint occur with disuse.

1) **Rat model + microCT:** Functionally relevant parameters, data collection technique

2) **OpenSim + Abaqus:** Loads, boundary conditions, geometry, material properties + Finite Element Model (microCT scapula and/or humerus)

3) **Predicted outcome:** Iteratively evaluate model and refine as needed

- **Q1:** How can I discretize/quantify biological contributions of growth?
- **Q2:** Are there advantages to dynamically modifying mechanical contributions from muscle forces?
- **Q3:** What are the key parameters to develop and validate the proposed model?
- **Q4:** Can we identify critical factors from the proposed model that yield clinically relevant information?